
J Comput Virol (2005) 1: 4–12
DOI 10.1007/s11416-005-0003-8

ORIGINAL PAPER

Ibrahim K. El-Far · Richard Ford · Attila Ondi
Manan Pancholi

Suppressing the spread of email malcode using short-term
message recall∗

Received: 17 December 2004 / Accepted:14 March 2005 / Published online: 17 September 2005
© Springer-Verlag 2005

Abstract Outbreaks of computer viruses and worms have
established a pressing need for developing proactive antivi-
rus solutions. A proactive antivirus solution is one that reli-
ably and accurately detects novel malicious mobile code and
one that either prevents damage or recovers systems from the
damage that such code inflicts. Research has indicated that
behavioral analysis, though provably imprecise, can feasibly
predict whether novel behavior poses a threat. Nevertheless,
even the most reliable detection methods can conceivably
misclassify malicious code or deem it harmful only after sub-
stantial damage has taken place. The study of damage control
and recovery mechanisms is, therefore, clearly essential to the
development of better proactive systems. Earlier work has
demonstrated that undoing the damage of malicious code is
possible with an appropriate behavior monitoring and record-
ing mechanism. However, it remains that even if a system is
recovered, the virulent code may have already propagated
to other systems, some of which may not be well-equipped
in terms of proactive defenses. Curbing the propagation of
undesired code once it has left the boundaries of a system
is a hard problem and one that has not received much atten-
tion. This work focuses on a specific instance of this difficult
problem: viruses and worms that spread by email. In this
paper, we explore how advantageous it would be to have a

The authors would like to thank the Cisco Critical Infrastructure Assur-
ance Group for their support in developing Hephaestus, and the Office
of Naval Research (Award Number N00014-01-1-0862) for support in
the ongoing development of Gatekeeper.

I.K. El-Far
Microsoft Corporation, 35/3307 Building 35, Microsoft Corporation,
Redmond, Washington 98052, United States,
Tel: +1-425-706-6615
E-mail: ielfar@acm.org

R. Ford · A. Ondi · M. Pancholi
Florida Institute of Technology,150 W. University Blvd, Melbourne,
Florida 32901-6975,
United States,
Tel: +1-321-674-7638,
E-mail: rford@se.fit.edu
E-mail: aondi@se.fit.edu
E-mail: mpancholi@se.fit.edu

short-term email undo mechanism whose purpose is to recall
infected messages. Simulation results demonstrate that such
ability can substantially curb the damage of email viruses on
a global scale. The results are encouraging because they only
assume technology that is either readily available or that is
otherwise clearly practical today.

1 Introduction

Two challenges to the development of useful antivirus solu-
tions are the design of reliable, accurate virus detection strat-
egies and the implementation of virus damage control and
cure. In taking on these challenges, computer antivirus devel-
opment has followed a technically simple model.

In following this model, members of the antivirus com-
munity monitor and report virus and worm activities. When a
new virus demonstrates some risk to the computer user com-
munity, antivirus solution developers quickly analyze it in
order to identify its characteristics and the damage it inflicts
on systems and networks. They then build a detection mech-
anism that typically looks for some specific signature of that
virus, and create procedures to cure infected systems. How-
ever, it should be noted that the design of most systems today
makes reversing the damage of some viruses difficult if not
altogether impossible after infection has occurred.

This process concludes with the distribution of the new
detection and repair algorithms to users. In addition, the an-
tivirus community attempts to raise user awareness of the
potential threat and to improve their vigilance in spotting
and avoiding it. This is sometimes called a reactive model
because the community addresses a virus only after it finds
it: protection is specific to a particular virus or worm. In the
past, most threats have been slow to materialize and spread
globally, and that has typically given the community enough
time to respond. This, among other reasons, has contributed
to the success of reactive models in mitigating the majority
of past potential threats before they turn into epidemics [33].

While recognizing this success, the research community
has long been skeptical of the reactive development model.
In a paper on computer virus research [33], Steve White, of



Suppressing the spread of email malcode using short-term message recall 5

the IBM Thomas J. Watson Research Center, identifies the
development of proactive antivirus approaches as a key open
problem for the research community. Development of heuris-
tics represents a step toward detection of new viruses, but is
provably incomplete [9]. The dependency on community vig-
ilance, user awareness, and custom antivirus solution-update
distribution is clearly risky. The evolution of modern sys-
tems, networks, programming frameworks, and computing
resources have, predictably, contributed to the obsolescence
of the reactive model in the face of novel viral, or otherwise
exploitive, behavior.

Today’s industry has a very pressing reason to recognize
the reactive model is no longer sufficient: an increasing num-
ber of outbreaks of rapid-spreading, malicious, mobile code
(MMC) has rendered available solutions all but useless in
averting global epidemics. Many such outbreaks had serious
ramifications for businesses and individuals, commanding
substantial coverage in both technical and mainstream news
media; [19], [20], [21], [13]. Code Red [2], [17], [36], Slam-
mer [16], Blaster [18], and MyDoom [35] are some examples.

1.1 Proactive Solutions

The main objective of proactive antivirus solutions is to ad-
dress previously unseen viruses. This is a difficult problem –
indeed, some early research has focused on whether detecting
novel viruses is even feasible. In a widely cited paper on com-
puter virus theory [4], Fred Cohen formally proves that is not
possible to create a static scanner that is completely accurate
for all possible viruses. In a lesser-known paper [1] by Co-
hen’s advisor, Leonard Adleman uses a different formalism
and also arrives at the same result. The key takeaway from
this theoretical work is that behavioral detection of viruses is
probably the most viable option in dealing with previously
unseen viruses. Another key result is that behavioral virus
detection must be imprecise by nature. Another complicating
factor is that over the years, the term virus, though precisely
defined by Cohen and Adleman, has come to mean virtually
any self replicating, propagating code that is a written with
malicious intent, a concept which cannot be formalized.

The majority of detection work has so far focused on
using a range of learning techniques to develop detection
that is both reliable and accurate (A more reliable technique
consistently detects more viruses. A more accurate technique
consistently detects the same virus.). Many of the techniques
that have been proposed to date focus on analyzing the behav-
ior of suspicious processes. All learning techniques depend
on how representative and rich a learning set is. They also
depend on how much observable behavior they can afford to
analyze before being forced to classify a particular object as
benign or malicious.

Proactive detection is a very difficult problem, and the
state of the art has a long way to go in terms of accomplishing
practical accuracy (that is, reducing false positive and false
negative rates). Unfortunately, the scope of this paper does
not allow for further discussion of detection methods; the

interested reader is referred to a paper by Jeremy Kolter and
Marcus Maloof [12] for a more complete discussion of this
isse. However, while detection has received substantial atten-
tion, the other challenge to proactive solution – damage con-
trol and recovery – has received considerably less scrutiny.

1.2 Damage Control and Recovery

A practical, proactive, and behavioral antivirus solution that
does not require frequent user interaction must employ an
effective strategy for reversing any damage that MMC inflicts
on a system. In addition to the fact that fixing damage is
important in and of itself, its study is worthwhile because it
can have a positive effect on the quality of behavioral detec-
tion.A paper by Herbert Thompson and Richard Ford [9] sug-
gests there is a strong relationship between the availability of
damage reversal systems and the accuracy of behavioral virus
detection, especially the false negative rate. In another paper
[25], Dean Povey argues that a good recovery mechanism
enables a retrospective, optimistic security paradigm where
users may exceed their privileges when they need to and the
recovery mechanism is applied when an infraction occurs.

A good deal of work done in the design of fault toler-
ant systems, preserving data integrity, and database backup
systems is relevant to undoing the damage of a virus. Some
work, however, specifically addresses recovering from mali-
cious action. For example, a paper by Liu et al. [15] talks
about how to reverse the effect of harmful transactions in da-
tabases considering the dependencies that legitimate trans-
actions may have on the harmful ones. Another example is
a paper by Tallis and Balzer [29] in which they discuss how
to monitor the API of document processing applications in
order to maintain a record of how documents are created and
modified. The sequence of API calls used to create the doc-
ument can be used to create an identical copy. This allows
one to check whether a document has been altered by some
unauthorized process or a different application.

In another conference paper [34], James Whittaker and
Andres De Vivanco describe how they monitor the behav-
ior of processes via the API calls they make. If a process is
deemed malicious, this record of API calls is used to undo
the changes made by this process. Andres De Vivanco, in [6],
and Matt Wagner, [30], discuss different aspects of this in
some technical detail. Despite this work, however, there are
several problems that remain open in undoing the damage of
viruses; these are detailed in the next section.

1.3 Objectives

The remainder of this paper examines the impact of imple-
menting a short-term “undo” or “recall” mechanism for email
exchange. The idea is that by implementing such a feature,
behavioral virus detection could provide more accurate detec-
tion results while minimizing the spread of infection from one
machine to another via “leaks” of malicious code during the
detection process. The next section introduces aspects of the
problem that are specific to our behavioral antivirus engine,



6 Ibrahim K. El-Far et al.

Fig. 1 Schematic diagram of the Gatekeeper architecture. The Protocol validation engine is shown simply as an example of the type of engines
which can be included via the Gatekeeper API

Gatekeeper, and email undo. A presentation of simulation
results that help evaluate the impact of email undo follows.
This paper concludes with a discussion of the work in a larger
context.

2 Short term email undo and behavioral detection

One of the challenges with behavioral detection is that by the
time a sample is identified as hostile, changes and/or dam-
age may have already occurred on the host machine. Thus,
behavioral malware detection is not the same as behavioral
malware prevention: MMC-related damage may have already
occurred by the time a sample is classified as malicious in
nature.

To this end, we have extensively researched behavioral
virus detection coupled with the ability to undo certain changes
on a machine. Our virus prevention solution, Gatekeeper, pro-
vides a robust investigation for such research.Architecturally,
Gatekeeper has been described at length elsewhere [10]; how-
ever, a brief overview is provided here for clarity.

2.1 Design of Gatekeeper

The basic design of Gatekeeper is conceptually simple. Imple-
mented for the Windows environment, Gatekeeper consists

of three main components, a Monitoring Engine, one or more
Matching Engines, and an Undo Engine.

The Monitoring Engine uses HEAT technology [34] to
intercept calls a monitored program makes to the underlying
operating system. These calls are passed to the Meta-match-
ing engine, which pre-parses the data received and passes it
on to one or more Matching Engines. One of the matching
engines implements a robust “undo” function. The remainder
provide classification between viral and non-viral samples.
This arrangement is shown schematically in Figure 1. For the
purposes of this paper, we will focus on the limitations and
issues regarding undo.

As the Gatekeeper application is capable of monitoring
all interactions of a monitored program with the system, the
Undo engine simply has to “unwind” these interactions if the
process is deemed to be harmful. This is a much less intru-
sive solution than a sandbox, as the monitored application
interacts with the real system as opposed to a simulated or
limited one.

Gatekeeper’s Undo engine is a highly-granular backup-
restore system that keeps track of the effects of individual
computer processes on the protected systems. Traditional
backup-restore solutions use system snapshots; they take peri-
odic snapshots of a protected system, and, when it is deemed
infected or otherwise unusable, it is rolled back to the most
recent usable snapshot. This approach is effective in remov-



Suppressing the spread of email malcode using short-term message recall 7

ing the effects of a malicious action but also results in the
loss of benign and unrelated changes. For example, consider
the case of a user working on a document in one window and
receiving email in another. If the user is infected with a virus
via email, a typical restore operation would entail losing all
changes made on the machine since the time of the last sys-
tem snapshot. Thus, undo operations that are global in nature,
while helpful, can lead to additional loss of productivity.

In order to address these limitations, Gatekeeper focuses
its undo operations on individual processes. As the moni-
toring engine reports API calls a process makes to the undo
engine, the Undo engine records the API call, the action per-
formed by the call, and backs up the data that will be affected
by that action. For example, if the monitoring engine reports
that a process made a call to the Windows kernel’s Delete-
File, the undo engine notes the function, the file it is trying
to delete, and backs up that file before the process is actu-
ally allowed to delete it. In this way, the monitored process
is not “sandboxed” in that all actions actually occur on the
machine. This helps reduce the impact of Gatekeeper on pro-
gram behavior, and ensures that there is no loss of data reli-
ability or stability due to the Gatekeeper process.

In implementing the Undo Engine, Gatekeeper makes use
of a number of rules that explain how to undo specific actions.
For example, every action that changes the content of a file
can be undone by restoring a copy of that file taken right
before the action is carried out; each modification to the reg-
istry can be undone by restoring the old registry key value.
Similar rules can be devised for functions that modify secu-
rity and sharing permissions, etc. Such rules are developed
and set based on the various ways malicious code can make
changes to the system.

The idea of Undo is not entirely new; Tallis and Bal-
zer [29] explored a system very much like Gatekeeper’s for
implementing Undo operations. However, coupling Undo on
a systemic level with behavioral detection is an innovation
which provides for not only detection of new malware, but
also its removal. In our tests, the Undo protection used within
Gatekeeper has proven to be useful and reliable [10], and its
efficacy for repairing viral payloads and infections has been
demonstrated against Win32 samples contained on the Wild-
List [23].

2.2 Limitations

The process of undoing changes on a machine caused by a
specific process or process hierarchy is not trivial. There are
several conditions that Gatekeeper’s Undo engine is not able
to adequately deal with. For example, consider two processes,
B and M . Malicious process M modifies a file on the system.
Before Gatekeeper determines that M is malicious, process B
also modifies the file. Based upon this sequence, Gatekeeper
will determine that the system is in a state where the changes
by process M cannot be undone cleanly, as the changes by
process B may have been made as a result of M’s changes.
Without specific knowledge of process B’s functionality, it
is not possible to ascertain the relationship of the changes.

Aside from such race conditions and unknown depen-
dencies, Gatekeeper cannot undo actions that are not local-
ized within the machine itself. For example, any network
traffic that is generated by a viral process M cannot be easily
undone. This issue, known as “leaky detection” is potentially
serious, as some virus infections can spread from a protected
machine.

In terms of network traffic, there is the issue of network
traffic in general and the specific case of email. For network
traffic in general, MMC generally attempts to exploit a par-
ticular vulnerability so sending out “undo” signals to hosts
is not likely to be effective. However, the situation for email
viruses and worms is very different. Here, the MMC does
not immediately run on the remote machine. Instead, a well-
defined protocol, SMTP [24], is used to transmit an infected
object. This object does not generally use an exploit immedi-
ately on download; rather, it is only activated when the mail is
delivered to the destination machine and that email is opened
or previewed.

2.3 Email undo

Most users are familiar with the experience of sending an
email and immediately wishing it could be recalled. Errors
in addressing, reply-to addresses, content or simply acciden-
tally hitting send have often caused users to wish for a robust
email recall or undo function. However, there are many legal,
social and technical issues associated with such a process.

For example, the ability to recall email generally is non-
trivial from a technical perspective. Once email leaves the
SMTP system and is delivered locally, it is not trivial to re-
move the mail from the client, even if it is as yet unopened.
Similarly, recalling email is likely to increase the workload
on a system that is already taxed by message volume.

Technical issues regarding recall are not even the most
difficult part of the problem: if the offending email has al-
ready been delivered to the client, read, and acted upon, hav-
ing the email later disappear without a trace from the mailbox
could have legal and social ramifications. Thus, email recall
in the general case is fraught with problems.

However, for behavioral virus detection, long-term email
recall is not needed. Behavioral systems can generally detect
viruses transmitted via email fairly easily; large numbers of
emails do not usually “leak” from a Gatekeeper-protected
system. Thus, in terms of virus prevention, the ability to undo
email in the short term is almost as valuable as long-term
undo.

We propose a system for undoing email designed for
the explicit purpose of reducing the spread of email-aware
viruses. This system would have short term (of the order of
several seconds) undo ability, in order to minimize the bur-
den on SMTP servers. Furthermore, once an email has left
the control of the server (such as for an email downloaded
via POP), undoing the email is considered to be no longer
possible.

Such a system would be relatively lightweight to deploy,
and not open to widespread abuse. Furthermore, as it would



8 Ibrahim K. El-Far et al.

not impact read emails, many of the social and legal objec-
tions to recall would become moot. Technologically, undo
functionality would simply involve sending a second mes-
sage with some cryptographically strong unique identifier
that identified the email we wish to delete.

3 The simulation

In this section, we discuss how we simulate the spread of an
email-transmitted virus, and demonstrate the benefit short-
term email undo provides in the presence of “leaky detection”.
The section begins with a background on the simulation tool
that we use and pointers to related tools and analysis work. It
then describes the assumptions and set up of the simulation
and presents the results and our observations.

3.1 Background

This paper makes use of Hephaestus [8][27], a simulation
and modeling tool developed at the Florida Institute of Tech-
nology. Hephaestus is a discrete-time step Monte Carlo sim-
ulator that enjoys a number of modeling capabilities: it can
model the spread of mobile malicious code through a large
network; it can model host-based custom antivirus solutions;
and it can model network-based solutions. During simula-
tion, it is up to each node to exhibit interesting behavior: e.g.
vulnerable to infection, infected, protected from infection.
Finally, the simulator can handle several millions of nodes in
practice within a reasonable time and using moderate com-
puting resources.

Hephaestus is a member of the larger class of Monte Car-
lo simulators. Simulators are software systems developed
to imitate the real world, and they have been used in sci-
ence for both interpreting complex systems and predicting
their behavior. Monte Carlo simulators choose the values
of variables that are not deterministically predictable in a
pseudo-random fashion. There are several examples of such
simulators developed in relevant work that studies the spread
of computer viruses and worms: Nicholas Weaver’s simula-
tor used to study Warhol worms [32]; Bruce Ediger’s network
worm simulator [7]; the Swiss Federal Institute of Technol-
ogy’s simulator used to study distributed denial of service at-
tacks [26]; and Michael Liljenstam’s simulator used to study
such viruses as Code Red and SQL Slammer [14].

Other work in studying the spread of computer viruses
follows an analytical approach rather than that of simulation.
For example, Fred Cohen analyzed the transitive closure of
information flow among computers to show that complete
protection from a computer virus is not possible without
imposing limitations on sharing of information or degree of
connectivity [3] [4]. Alan Solomon developed an equation
that predicts the rate of infection in previously uninfected
machines will be proportional to the number of currently
infected machines, to the number of currently uninfected
machines, and to the probability of a given machine being

infected [28]. Other examples include the work of Jeffrey
Kephart and Steve White [11] and the work of Yang Wang
and Chenxi Wang on epidemiological models of computer
viruses [31].

In this work, the authors have chosen to use the predictive
faculties of simulation to derive its results. Hephaestus ad-
dresses the needs of this work and has been a convenient
choice for the authors. This convenience primarily stems
from its ready availability and easy extensibility of its en-
gine’s source code. A good reference to the original design
and implementation is Brian Shirey’s Master’s thesis [27].
We have extended that design in the course of this work to
model arbitrary connections that reflect dynamic networks
topologies such as those observed in email networks.

3.2 Assumptions

The simulation used in this paper models a typical mass mail-
ing virus which uses the address book of an infected ma-
chine to find targets in a simulated network of 100,000 nodes
to which it can spread. The simulation makes a number of
assumptions:

1. All nodes are vulnerable to the simulated email virus.
2. All nodes behave identically.
3. The virus may or may not reach all the nodes, depending

on the properties of the topology of connections.
4. In a typical setup, users read their email using a com-

mon email client on a common operating platform that
manages their home or dedicated office computer. In the
simulation, therefore, there is no distinction made among
users, email servers, and email client machines: every
user has a dedicated machine they use to check their
emails and the emails are delivered to those machines
instead of dedicated email servers.

5. All the contacts known to a given user are included in that
user’s address book.

6. There are no limits placed on the number of emails that
a node can send in any given timestep. This is a reason-
able simplifying assumption if timesteps in the simulation
correspond to an order of several seconds or even a few
minutes in real time.

7. Emails are delivered within one timestep of sending the
message.

8. There are no lost emails.
9. There are no delayed emails.

3.3 Topology

To create the contents of the address books of email clients
in our simulation we follow the topology described by Mark
Newman in a paper on the spread of viruses over email net-
works [22]. The distribution of in-degrees across nodes fol-
lows a simple exponential function, and the distribution of
out-degrees follows a stretched exponential with exponent
1/2. Every node has an address book that references other



Suppressing the spread of email malcode using short-term message recall 9

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4 Email Client 3 percent read chance

Simple Email Client

Fig. 2 A simple email client simulation with 100,000 nodes having no type of antivirus protection, executed over a period of 500 timesteps

nodes in the network with the number of entries and reci-
procity of vertices simulated in accordance with the findings
of Newman. The average number of entries in address books
is approximately 12.

3.4 Behavior of nodes

The Hephaestus universe is made up of a number of nodes that
together form the network within which the MMC spreads.
In our experiments, the following node types and properties
are used:

Simple Email Client Each node has an inbox of unread mes-
sages. The users have a chance of 3% of checking their
emails in every timestep. This rate of message download
is deliberately higher than one might predict, as it repre-
sents the worst-case scenario for our proposal. When a
user checks their inbox and it contains one or more in-
fected emails, the user’s computer becomes infected and
sends infected messages to every entry in the user’s ad-
dress book. This is a “worst case” scenario, as most email
viruses do not spread just on preview or open.

Email client with Gatekeeper These nodes behave as
described for the Simple Email Client, with the exception
that they cannot send more infected messages than a set
limit, indicating Gatekeeper’s recognition and removal
of the virus based upon its actions. Since Gatekeeper can
only detect malicious behavior of individual applications,
the node can be re-infected in subsequent timesteps.

Email client with email undo The nodes behaved as
described for the Email Client with Gatekeeper with the
exception that once Gatekeeper detects the virus, an Undo
request is sent to every contact in the node’s address book
to which infected emails have been sent. Once an Undo
Email is received, the infected message that has arrived
in the previous timestep is removed if the message is still
unread in the inbox. If the infected message has already
been read, no action is taken in response to undo requests.

3.5 Setup

In every simulation we connected 100,000 nodes as described
in the Topology section. To manage the typical statistical fluc-
tuations from one run to the next, we ran the simulations ten
times for each setup and averaged the results. In every case
five nodes were selected randomly to be pre-infected with
the virus.

3.6 Simulation with email clients

As shown in Figure 2, with no protection, the infection spreads
rapidly among the nodes and approaches saturation at around
250 timesteps with a 3 percent chance that the user will read
emails. The mean number of infected machines settles at
around 34,000 infected nodes. Based upon the level of con-
nectivity in our email network, this value seems to be accu-
rate, and helps confirm the reliability of our simulator.



10 Ibrahim K. El-Far et al.

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5
x 10

4

Time Steps

N
od

es
 In

fe
ct

ed

Email Client, With GK, 3 percent read chance

Threshold 2
Threshold 5
Threshold 8
Threshold 10

Fig. 3 A simple email client simulation with 100,000 nodes with Gatekeeper activated at thresholds of 2, 5, 8, and 10 and executed over a period
of 500 timesteps

3.7 Simulation with gatekeeper

As shown in Figure 3, the results with Gatekeeper enabled
show that it can significantly slow down the spread of email
viruses, but only if it is able to identify the threat relatively
quickly. As an example, with a threshold of 2, Gatekeeper
is able to provide significantly more virus suppression than
with a threshold of 10. This behavior is understandable: in
a network, where the average number of entries in address
books is 12, a threshold of 10 for Gatekeeper will let the
virus send at most 10 infected emails (limited only by the
address book), which means that it provides almost no limit
to virus spread. When we compare the graphs in Figure 2
and Figure 3, it is clear that Gatekeeper can make a differ-
ence in the impact and spread of viruses, even though only
a rather small percentage (26.6% for threshold 2, 18.3%
for threshold 5, 13.8% for threshold 8, 11.7% for threshold
10) of machines have address books large enough to trigger
detection

3.8 Simulation with email undo

The Email Undo results are even better – as expected – than
the standalone Gatekeeper mechanism without undo. Short-
term email undo reduces the spread by an order of magnitude
even at the high 10 message detection rate. At a threshold of
2 and 5, Gatekeeper completely prevents an epidemic.

The explanation of the observed spread with a limit of
10 emails before detection is quite simple: email undo re-
quests are only sent when Gatekeeper identifies the appli-

cation as malicious. Therefore machines with small address
books do not ever send enough email to trigger detection and
therefore operate as though Gatekeeper was not running on
them.

3.9 Observations

We have seen that machines with no protection are quite
vulnerable to email viruses. Email-enabled MMC spreads
quickly and effects a large part of the population. The results
also show that Gatekeeper itself cannot prevent an epidemic
of email-based viruses, but can introduce a significant de-
lay to the onset of a full-fledged epidemic. This delay might
be enough for the antivirus community to develop detection
and removal algorithms to fight the virus before the infection
grows too high. Undo results are even more promising, how-
ever. If Gatekeeper is quick in its recognition of the virus,
Email Undo practically eliminates the infection cycle with
very few nodes being infected.

4 Closing remarks

In this paper, we have examined the effect of “leaky” behav-
ioral detection of email-aware viruses. Using our simulator,
Hephaestus, we have modeled the spread of a worm that uses
address books on infected machines in order to spread, and
demonstrated that a behavioral approach which allows some
infected emails to be sent before detection can still signifi-
cantly delay an epidemic. Finally, we have demonstrated that



Suppressing the spread of email malcode using short-term message recall 11

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000

7000

8000

Time Steps

N
od

es
 In

fe
ct

ed

Email Client, With GK Undo On, 3 percent read chance

Threshold 2
Threshold 5
Threshold 8
Threshold 10

Fig. 4 A simple email client simulation with 100,000 nodes with Gatekeeper activated at thresholds of 2, 5, 8, and 10 with the undo feature turned
on and simulation performed over 500 timesteps

even a short-term email undo function can greatly increase
the efficacy of MMC suppression.

The need for such functionality is clear when considering
behavioral detection. Late detection – that is, detection after
a large number of behaviors have been observed – is more
accurate than detection after only a few actions. Furthermore,
there is no easy way for a behavioral system to safely buffer
outbound email in order to gain a larger sample of program
behavior.

Another possible solution to the problem on the Windows
platform lies within MAPI the Microsoft Mail API [5]. If the
operating system were to force all outbound email to use
MAPI, and if MAPI had to be used asynchronously (that is,
an application requests email service, and can send emails,
but is informed asynchronously of success or failure), undo
would be less critical, as outbound emails could be delayed
until the behavioral system has gathered sufficient informa-
tion to classify the sending program.

Overall, we have shown that the inclusion of a short-term
email undo function in behaviorally-based anti-virus solu-
tions would allow significant improvement in suppression
rates. Furthermore, we argue that such a limited undo func-
tion overcomes the most serious objections to email recall
in general. Finally, we suggest that the idea of “undoable”
actions holds great promise for improvements to behavioral
malcode suppression in general and urge authors and devel-
opers of systems to consider this fact when designing func-
tionality.

References

1. Adleman LM (1990) An abstract theory of computer viruses. In:
CRYPTO ’88: Proceedings of the 8th Annual International Con-
ference on Advances in Cryptology (Lecture Notes in Computer
Science; Vol. 403), Springer-Verlag, pp 354–374

2. Berghel, H (2001) The code red worm. Communications of the
ACM 44(12):15–19

3. Cohen, F (1986) Computer Viruses. Ph.d. thesis, University of
Southern California

4. Cohen, F (1987) Computer viruses: Theory and experiments. Com-
puters and Security 6:22–35

5. Microsoft Corporation. Messaging application programming
interface (mapi), 2004. http://msdn.microsoft.com/library/default.
asp?url=/library/en- us/e2k3/e2k3/ techsel tech 13.asp.

6. De Vivanco, A (2002) Comprehensive Non-Intrusive Protection
with Data-Restoration: A Proactive Approach against Malicious
Mobile Code. Master’s thesis, Florida Institute of Technology

7. Ediger, B (2005) Simulating network worms. http://www.users.
qwest.net/ eballen1/nws/.

8. Ford, R (2003) Microsoft, monopolies and migraines: the role of
monoculture. Virus Bulletin Magazine

9. Ford R, Thompson HH (2004) Future of proactive virus detection.
In: Proceedings of the EICAR Conference, Luxembourg

10. Ford R, Wagner ME, Michalske J (2004) Gatekeeper ii: New ap-
proaches to generic virus prevention. In: Proceedings of the Inter-
national Virus Bulletin Conference Chicago, IL, USA

11. Kephart JO, White SR (1991) Directed-graph epidemiological
models of computer viruses. In: Proceedings of the 1991 IEEE
Computer Society Symposium on Research in Security and Pri-
vacy Oakland, California, USA IEEE pp 343–359

12. Kolter JZ, Maloof MA (2004) Learning to detect malicious ex-
ecutables in the wild. In: Proceedings of the 2004 ACM SIGKDD
international conference on Knowledge discovery and data mining.
USA, ACM Press pp 470–478



12 Ibrahim K. El-Far et al.

13. Legon J Tricky ‘mydoom’ e-mail worm spreading quickly, 27 Jan-
uary 2004. http://www.cnn.com/2004/TECH/internet/01/26/my-
doom.worm/index.html.

14. Liljenstam M (2003) Ssf.app.worm: A network worm model-
ing package for ssfnet, http://www.crhc.uiuc.edu/mili/research/
ssf/worm/.

15. Liu P, Ammann P, Jajodia S (2000) Rewriting histories: Recover-
ing from malicious transactions. Distributed and Parallel databases
8(1):7–40

16. Moore D Paxson V, Savage S, Shannon C, Staniford S, Weaver
N (2003) Inside the slammer worm. IEEE Security and Privacy
1(4):33–39

17. Moore D, Shannon C, Claffy K (2002) Code-red: a case study on the
spread and victims of an internet worm. In: IMW ’02: Proceedings
of the 2nd ACM SIGCOMM Workshop on Internet measurment
Marseille, France pp 273–284

18. Morrison J (2004) Blaster revisited. Queue 2(4):34–43
19. Cable News Network. Code red computer worms targets

white house, 2001. http://archives.cnn.com/2001/TECH/inter-
net/07/20/code.red.worm/index. html.

20. Cable News Network. Microsoft offers virus bounty, 5
November 2003 2003. http://www.cnn.com/2003/TECH/biz-
tech/11/05/microsoft.bounty/index.html.

21. Cable News Network. Slammer worm could pick up steam mon-
day: New vulnerabilities might arise as businesses boot up,
27 January 2005 2003. http://www.cnn.com/2003/TECH/inter-
net/01/26/internet.attack/index.html.

22. Newman MEJ, Forrest S, Balthrop J (2002) Email networks and
the spread of computer viruses. Physics Review E (Statistical, Non-
linear, and Soft Matter Physics) 66(035101)

23. Wild List Organization. The wild list, 2005. http://www.wild-
list.org/WildList.

24. Postel JB (1982) Simple mail transfer protocol (rfc821),
http://www.ietf.org/rfc/rfc0821.txt.

25. Povey D (2000) Optimistic security: a new access control para-
digm. In: NSPW ’99: Proceedings of the 1999 workshop on New
security paradigms Caledon Hills, Ontario, Canada, 2000. ACM
Press pp 40–45

26. DDoSVax Project, 2004. http://www.tik.ee.ethz.ch/ ddosvax/.
27. Shirey CB (2004) Modeling the Spread and Prevention of Mali-

cious Mobile Code Via Simulation. Master’s thesis, Florida Insti-
tute of Technology

28. Solomon A (1990) Epidemiology and computer viruses.
http://ftp.cerias.purdue.edu/pub/doc/viruses/epidemiol-
ogy and viruses. txt.

29. Tallis M, Balzer R (2001) Document integrity through mediated
interfaces. In: Proceedings of the second DARPA Information Sur-
vivability Conference and Exposition, Anaheim, CA, USA, 2001.
IEEE pp 263–270

30. Wagner ME (2004) Behavior Oriented Detection of Malicious
Code at Run-Time. Master’s thesis, Florida Institute of Technology

31. Wang Y, Wang C (2003) Modeling the effects of timing parame-
ters on virus propagation. In: WORM’03: Proceedings of the 2003
ACM workshop on Rapid Malcode, Washington, DC, USA. ACM
Press pp 61–66

32. Weaver N, Warhol worms: The potential for very fast internet
plagues, 2001. http://www.cs.berkeley.edu/ nweaver/warhol.html.

33. White SR (1998) Open problems in computer virus research. In:
International Virus Bulletin Conference, Munich, Germany

34. Whittaker JA De Vivanco A (2002) Neutralizing windows-based
malicious mobile code. In: SAC ’02: Proceedings of the 2002ACM
symposium on Applied computing, Madrid, Spain. ACM Press pp
242–246

35. Wong C, Bielski S, McCune JM, Wang C (2004) A study of mass-
mailing worms. In: WORM ’04: Proceedings of the 2004 ACM
workshop on Rapid malcode, Washington DC, USA, ACM Press
pp 1–10

36. Zou CC, Gong W, Towsley D (2002) Code red worm propagation
modeling and analysis. In: CCS ’02: Proceedings of the 9th ACM
conference on Computer and communications security, Washing-
ton, DC, USA, ACM Press pp 138–147

37. Zou CC, Towsley D, Gong W (2003) Email virus propagation mod-
eling and analysis. Technical Report TR-CSE-03-04, University of
Massachusetts


